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SUMMARY 
A simple technique is presented for the numerical solution of two-dimensional time-dependent flows, either 
laminar or turbulent, involving multiple free surfaces of arbitrary configuration. The governing equations 
are the Reynolds equations for incompressible fluids with Boussinesq closure, the k- and &-equations and an 
additional equation describing the fluid configuration. This technique can potentially describe the propaga- 
tion, deformation and overturning of pre-breaking waves and the mean flow, surface configuration and 
turbulence field after breaking. The properties of the method are illustrated by several calculational 
examples. The main parts of the algorithm are optimized for vector processing in a form suitable for 
installation in supercomputer facilities. 
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1. INTRODUCTION 

In recent years numerical modelling has been successfully applied to many difficult free surface 
flow problems such as propagation, reflection and interaction of highly non-linear waves, wave 
overturning, waves breaking over submerged obstacles, ship waves and dam-break problems. The 
occurrence of the breaking phenomenon introduces abrupt and complicated changes in the 
behaviour of the flow, whose mathematical description is difficult. Non-breaking wave motion is 
nearly irrotational. Consequently, several theoretical models are available to predict the evolu- 
tion of the flow.’ However, after breaking, intense vorticity, turbulence and energy dissipation are 
generated. In this stage the complexity of the turbulence transport processes precludes the 
application of the theoretical models used for treating pre-breaking and overturning motion.’ 

In this work a new algorithm for studying two-dimensional time-dependent flows with 
arbitrary free surface configuration is described. The governing equations are the Reynolds 
equations for the mean velocity and pressure with Boussinesq (eddy viscosity) closure, the 
modelled k- and and an additional equation which defines the fluid configuration 
by means of the volume-of-fluid (VOF) F-function.’ The solution algorithm, from hereon called 
2D-HYDROTUR, has been developed by the author as an extension of the SOLA-VOF6 
programme for laminar flows. The momentum and turbulence equations are discretized by means 
of finite differences using a combination of upstream and central differencing together with local 
truncation error correction terms.’ The continuity equation is satisfied using the pressure- 
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velocity iteration technique6.8 and the F-advection equation is integrated using the donor- 
acceptor flux a p p r o x i m a t i ~ n . ~ ~ ~  Special attention is given to the initial and boundary conditions 
for the turbulence equations. 

The most important feature of 2D-HYDROTUR is its capability of treating both breaking and 
non-breaking flows with arbitrary time-dependent configurations. This model provides an 
alternative tool for a self-contained study of wave transformation phenomena, including propa- 
gation, deformation, interaction and overturning of pre-breaking waves, and also the mean 
velocity, pressure, surface configuration and turbulence field in broken waves. This flexibility is 
illustrated in several calculations reported below. 

Computational efficiency and reliability are important elements of the 2D-HYDROTUR 
programme. The most time-consuming parts of the algorithm have been programmed so as to 
take advantage of vector and parallel processors. The programme has been run on a large number 
of computers ranging from PC-compatible to large vector mainframes. 

2. GOVERNING EQUATIONS 

The governing equations for the mean motion of an incompressible fluid of uniform density are 

au au au 
at ax a y  ax 
-+u-+o-= -- a4 +g*+(v  + itl 10* VJVZU, 

av av av a4 
- + u - + v - = - - + gy + (v + id 10* Vr)V2V, 
at ax ay ay 

au a0 
-+-=0, ax ay (3) 

where u and v are the mean velocity components in the co-ordinate directions x and y 
respectively, 4 is the mean pressure divided by the constant density (energy per unit mass due to 
the pressure field), gx and gy are the components of the body force vector in the co-ordinate 
directions x and y respectively, v is the fluid kinematic molecular viscosity, v, is the eddy viscosity 
and ill10 is an indicator whose value is zero for a laminar flow and unity for a turbulent flow. The 
local state of turbulence is represented by the two equations3 

ak ak ak 
- + u - + v - = V .  
at ax ay 

aE a E  a& 
at ax ay  
-+u-+v-=V- 

(4) 

(5 )  

where k is the turbulent kinetic energy per unit mass, E is the rate of dissipation of k ,  prod is the 
production of turbulent kinetic energy, 

prod = v,[2( gy + 2( 2)’ + (6 au +zy], av 

and the eddy viscosity v, is defined in terms of k and E by the expression 

k2 
V,=Cd-. 

& 

The adopted values for the empirical constants of the k--E model are given in Table I. 
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Table I. Adopted values for the empirical constants of the k--E 
turbulence model (after Rodi3) 

Cd uk g e  c, c2 

0.09 1 .o 1.3 1 44 1.92 

Equations (4) and ( 5 )  are derived from the exact transport equations for k and E using closure 
assumptions to express the unknown correlations in terms of knowable quantities. These closure 
assumptions are valid only for high-intensity and nearly isotropic turbulence. In turbulent free 
surface flows the transition between zones with strong turbulence and zones where the flow is 
nearly laminar is often abrupt and intermittent. Therefore it is necessary to refine the standard k--E 
model to describe such transitions properly. This problem has been analysed by several authors 
(see e.g. References 9-11). Following the proposal of Harlow and Nakayama,'O3'' the eddy 
viscosity v, is replaced by 

i.e. the effective eddy viscosity is reduced for low-intensity turbulence. The form of the damping 
function is obtained by relating the mean viscous retarding acceleration of a turbulence eddy to 
the Oseen approximation for the force on a sphere."-" The cut-off is determined by the local 
turbulence Reynolds number VJV and the empirical constant P, whose recommended value is 100. 

The fluid configuration is defined by a volume-of-fluid (VOF) function F(x ,  y, t ) ,  whose value is 
unity at any point occupied by the fluid and zero elsewhere. Cells with F =  1 are full of fluid 
whereas cells with F = 0 are empty. Cells with F-values between zero and unity and having at least 
one empty neighbour contain a free surface. The equation governing the time evolution of F is 

aF aF aF -+ u-+ u-=o, 
at ax ay 

which states that F moves with the fluid. 
Equations (1)-(6) describe laminar or tuubulent flows with or  without free surfaces. If a laminar 

flow is to be treated, then it1 10 = 0 and the k--E equations need not be included in the calculation. 
In this case (u, u )  and 4 should be interpreted as instantaneous velocity and pressure rather than 
as mean (ensemble averaged) quantities. Confined flows can be treated by imposing 
F =  1 everywhere as the initial condition and assuring that F does not change inside the domain 
by correct application of the boundary conditions during the calculation. 

3. FINITE DIFFERENCE FORMULATION 

The governing equations are discretized using a finite difference staggered grid system of 
rectangular cells of variable width Axi and height Ayj (Figure 1). The fictitious cells surrounding 
the domain are used to set boundary conditions. The arrangement of the dependent variables in a 
typical cell is illustrated in Figure 2. 

The basic computational cycle of 2D-HYDROTUR is the following. First, explicit approxima- 
tions of equations (1) and (2) are used to compute the first guess for the new time level velocities 
using the previous time level values of the advective, pressure, viscous and Reynolds stress 
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Figure 1. Finite difference mesh with variable rectangular cells 

accelerations. This temporary velocity field will not in general satisfy the continuity equation 
(though it already carries the correct vorticity). To satisfy equation (3), pressures are iteratively 
adjusted in each cell in such a way that the discrete divergence in the cell is driven to zero. Then 
the velocity changes induced by each pressure correction are added to the temporary velocity 
field. After this stage equations (4) and (5) are used to update k and E, which in turn define the 
time-advanced eddy viscosity. Finally the new fluid configuration is found using equation (6). The 
structure of the 2D-HYDROTUR algorithm is illustrated in Figure 3. 

To simplify the writing of the finite difference equations in the staggered mesh, it is convenient 
to introduce the operators 

A: A, j = ( . t +  1, j-L j) /Ax +, 

A; fi. j = ( fi, j + 1 -J;, j)/Ay + 9 

A; A, j =(h. j-A. j -  1 )/Ax - 7  

A; fi, j = (A ,  j -fi, j - 1 )/AY -, 

A: (fi + I / * ,  j - f i  - l / z ,  j)/AXi, A; fi, j =(A,  j+  I / Z  -1, j -  1/2)/AYj, 

A;A, = [AX *(A: f ; , , )  +AX + *(A; A , j ) ] / (Ax  + i- AX - ), 

A:A, j =  CAY - *(A; A, j) + AY + * (A; 1;. j)I/(Ay + + AY - ' 1 9  

Ax,f,,j=2*(A: fi, j -  A; J;. j)/(Ax' + A X - ) ,  

Ayyfi. j=2*(A; fi, j -  A; 5. j)/(AY + + AY - ), 

where f is a generic variable, Ax+ =xi+ -x i ,  A x -  =xi -x i -  
and (x i ,  y j )  defines the position where 
approximation of the momentum equations is 

Ay+ = y j +  1 -Y,, Ay-  =y,-yj-1 
is stored in the discrete mesh. A finite difference 

f i i+ 1 / 2 ,  j=u1+ 112, j+  A t [ (  by, j -  by+ 1 ,  j)/Axi-fuXY+ 1/2,j--fu~2+ 112, j 

+ uisx;, 1,2, j+ itllO*reynxl, j+gxl ,  (7) 

+uisy~,j+li2+itl10*reyny1,j+li2 +gyl ,  (8) 
cis j + 112 = uy, j + 112 + A t  C( 4:. j - 4:. j + 1 )lAYj -foxy, j + l / ~  - f v ~ t  j + I / Z  

where f i i +  1,2,j  and Ci , j+  liz are temporary velocities and the superscript n indicates that the terms 
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Figure 2. Location of variables in a typical mesh cell 
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Figure 3. Structure of the 2D-HYDROTUR algorithm 

are evaluated at time t .  The advective, viscous and Reynolds stress acceleration terms have an 
obvious meaning, e.g. f ix  is the advective flux of u in the x-direction, uisx is the x-component of 
the viscous acceleration and reynx is the Reynolds stress acceleration in the x-direction. The 
approximations for the advective fluxes are weighted combinations of upstream and central 
differencing with a parameter u that controls the relative amount of each one. The approxima- 
tions for these fluxes in a variable mesh can be found in Reference 6. The centred approximations 
are underdiffusive and require some viscosity to remain stable. Upstream differencing has better 
stability properties but the resulting numerical diffusion may introduce gross errors in the 
computed solution. An alternative combining the advantages of both types of approximation is 
the introduction of local ‘balancing terms’ that correct the most destructive part of the truncation 
error.’. l 3  This idea leads to the following discretization of the viscous acceleration terms: 

uisx = C v  + (1 - a)(At/2)(i2)i + 112. j I A x x ~ i  + 112, j + C v  + (1 - a)(At/2)(u2 )i + 112, jI A y y  Ui + 1/2. j ,  (9) 

uisy = C v  + ( 1 - .)(At/2)(u2 )i, j + l p  I Axx ui. j + 1/2 + Cv + (1 - a)(At/2)(u2 )i, j + 1/2 I A y y u i ,  j + 1/2 * (10) 
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The expressions for the modelled Reynolds stress accelerations are 

r e ~ n x  = (vth + 1 /2,  j(Axx + Ayylui + 1 /2,  j, 

rey ny = (vtli, j + 1/2 ( Axx + A y y l u i ,  j + 1 / 2 .  

(1 1) 

(12) 

To satisfy the continuity equation, pressures and velocities are adjusted in each cell occupied by 
In full cells the pressure is changed in such a way that the discrete divergence di, of the 

temporary velocity is driven to zero. The pressure change is 

where 

The pressure and velocities in the faces of cell i j  are updated as follows: 

where the superscripts (new) and (old) denote iteration levels. This pressure-velocity iteration 
technique is a special form of Newton's method applied to the (discrete) pressure Poisson 
equation for incompressible flow.', l o  In cells containing a free surface the continuity equation is 
replaced by the dynamic condition of continuity of the normal stress, i.e. the pressure is computed 
in such a way that an interpolation between the surface cell pressure and the pressure in the 
nearest-neighbour full cell yields the correct pressure at the free surface.'* l4 One complete 
iteration consists of correcting the pressures and velocities in all cells occupied by the fluid. The 
mesh must be swept several times until convergence is reached. 

After determining (u, u )  and 4, equations (4) and (5)  are advanced in time to update the 
turbulence field and define v,  at the new time level. The approximations for the k- and &-equations 
are 

k;, = ky, + At { -fix;, ,-fiy; + uisk;, ++[(prod - E ) " +  +(prod - &)"Ii, j}. (1 5) 

The advective and diffusive terms have an obvious meaning, e.g. fkx = u(ak/dx). For example, the 
approximation for fkx is 

where Axa = Axr +Ax, + sgn(uy,: )( Axr - Ax,) and the space increments Axr and Axl are the 
distances between the centre of cell ij and the centre of its right and left neighbours respectively. 
The weighting factor y controls the amount of upstream differencing for the turbulence equations 
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and may be chosen different from a. The diffusion terms such as uisk are discretized as 

uisk = A: [(v + v t / f J k ) A i  k]:,  + A: [(v + v , / o k ) A i  k]!,  + i ( y  - 1)At [(u');,; A,,k!, + ( u  )i, A,,,,kT, j ] .  

The last step of the computational cycle consists of advancing the F-function in time using 
equation (6). In this work the donor-acceptor flux approximation introduced by Nichols and 
Hirt5 is used. A detailed discussion of this topic can be found in References 5 and 6. 

2 n + l  

4. BOUNDARY CONDITIONS 

The governing equations contain six dependent variables (u, u, 4, k, E and F ) .  Equations (l), (2), (4) 
and (5) are second-order parabolic in time and thus boundary conditions for (u, u),  k and E must 
be prescribed on every boundary point. Equation (6) is a first-order hyperbolic equation and 
requires one boundary condition to be specified on every boundary point where the streamlines 
(characteristics) enter the fluid domain. In an incompressible flow, boundary conditions for 4 are 
not required. A significant advantage of the pressure-velocity relaxation technique is that 
artificial boundary conditions for 4 are not required.' 

At the regular mesh boundaries a variety of boundary conditions can be imposed using the 
fictitious cells around the mesh. The present algorithm incorporates free slip, no-slip, continu- 
ative, periodic, constant pressure and law-of-the-wall boundary conditiom6 These latter are vital 
for calculating turbulent flows near solid walls, by providing boundary conditions for the 
tangential velocity, k and E,  and will therefore be discussed in some detail. 

In a constant stress turbulent boundary layer the local state of turbulence is characterized in 
terms of the friction velocity u,. In the 2D-HYDROTUR model u, is calculated using a 
combination of the linear and logarithmic wall l6 

u ,  = max [x * I uwl, (I u, 1 v/Y,)~'~I, (1 6)  

where u, and y, are the mean velocity and the distance from the wall for the layer of mesh cells 
adjacent to the boundary. X is the solution of the implicit equation 

Xln(A *X)-K=O, (17) 

where A =  EJu,Jy,/v, IC ,0.41 and E -9.0. The friction velocity provides boundary conditions for 
the tangential velocity, k and E in all mesh cells adjacent to the walL3 Referring to Figure 4, these 

Figure 4. Schematization of wall boundary conditions in a turbulent flow 
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boundary conditions are 

4 
~y [ 1 - exp( - u* y/26v)] ‘ Ei, 2 = 

Equation (20) states that near the boundary the eddy viscosity follows the van Driest 
Similar wall boundary conditions are used for the other boundaries, reversing the roles of u and u 
as appropriate. In 2D-HYDROTUR internal obstacles may be defined by blocking out any 
desired combination of cells in the mesh. Around these internal obstacles, free slip, no-slip and 
law-of-the-wall boundary conditions may be imposed. 

In cells containing a free surface the correct boundary conditions are the continuity of the 
velocity and stress vectors (called the kinematic and dynamic boundary conditions respectively) 
plus special boundary conditions for k and E. The kinematic boundary condition is automatically 
satisfied in the F-advection step. The dynamic boundary condition for the normal stress 
component of the stress vector is imposed during the implicit pressure evaluation (Section 3). The 
tangential stress condition (vanishing of the tangential component of the stress vector) is 
approximated by specifying velocities immediately outside the free surface where these values are 
needed in the finite difference equations in the surface cells.69 l4 The free surface boundary 
conditions for k and E are the most difficult to specify owing to the complexity of the turbulence 
dynamics near the interface. The solutions that have been proposed assume that the free surface 
has small curvature and the boundary conditions for k and E are obtained using modified wall 
laws (see e.g. Reference 3). However, in strongly turbulent breaking flows the most relevant 
turbulence-generating processes occur inside the water body and are driven by the internal 
velocity shear created by the folding of the free surface. In order to derive simple and physically 
coherent boundary conditions for k and E,  it is better to assume that the surface interaction 
between air and water is of negligible significance during the time of breaking compared with the 
influence of the internal processes on the values of k and E near the surface. Therefore the assumed 
boundary conditions at  the surface are d k / d n  = 0 and &/an = 0. This treatment for the turbulence 
variables was recently proposed by Launder” (though in a different context and with a different 
theoretical justification). To simplify the application of these boundary conditions, the orienta- 
tion of the free surface is sensed in a crude way. If the slope of the free surface is less than unity, 
dJdn ‘V spy; otherwise dJdn N d p x .  

5. INITIAL CONDITIONS 

In order to define a well-posed problem, initial conditions for u, u, F, k and E must be supplied. 
The minimum requirements for the initial velocity field are the solenoidal property and the 
continuity of its normal component at the boundary.’s The initial F-function distribution is 
chosen so that, for the desired initial fluid configuration, F =  1 in full cells and the fractional 
volume in the surface cells defines the interface shape properly. 

It is very difficult to specify initial conditions for k and E.  Ideally, these conditions for the 
turbulence variables should be prescribed according to experimental data, but this type of 
information is not always available for the flow of interest. Hence either theoretical or heuristic 
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methods must be used. The simplest possible solution consists of prescribing constant values for k 
and E (hence for v,). Another alternative consists of using theoretical profiles. Nevertheless, this 
procedure is limited to simple flow geometries and requires a detailed knowledge about the 
solution itself. To (partially) overcome this problem, a general purpose method for generating 
initial distributions for k and E was developed in parallel with 2D-HYDROTUR. The method 
consists of simplifying equations (4) and (5) in such a way that the resulting equations define a 
boundary value problem for the turbulence variables. These simplified equations are 

(21) 
"i 

Ok 
- V 2 k + p r o d - & = 0 ,  

"i E E 2  
- V'E + C ,  - p r o d -  C, -=O, 
UE k k 

where v i  is a constant viscosity with typical values from two to three orders of magnitude higher 
than the molecular viscosity. Equations (21) and (22) smoothly 'expand' the boundary conditions 
to the interior of the solution domain. This method generated good initial conditions in several 
test problems, such as isotropic turbulence decay, logarithmic boundary layer flow and turbulent 
cavity flow. 

6.  APPLICATIONS 

In this section several numerical calculations are reported to illustrate the capabilities of the 
present technique for calculating free surface turbulent flows. 

The first example illustrates the development of turbulence in moving hydraulic jumps 
generated by pushing a horizontal uniform stream of fluid into a vertical rigid wall (Figure 5). The 
celerity C at which a hydraulic jump moves and the fluid height at the wall, h , ,  are obtained from 
the mass and momentum conservation laws 

u2= ( 1-- ;;) c, c= ( g-- ;; h,  ;h2)1" , 

given g, u2 and hZ. In a frame of reference moving with the jump celerity, the flow is steady and the 
relevant jump properties (depth ratio h , /h , ,  surface profile, turbulent kinetic energy and shear 
stress distributions, etc.) might be expressed as functions of the supercritical Froude number 

F=-- lU2-CI  

(gh,)"2' 

Experimental investigations on steady turbulent jumps reported in the literature (see Reference 
18) usually provide information on the mean velocity and free surface configuration and on the 
distribution of the normal and shear turbulent stresses. 

H C 

Figure 5. Schematization of the moving hydraulic jump 
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Figures 6 and 7 illustrate the velocity field and the distribution of k respectively for a moving 
jump with IF = 1.854 and depth ratio 2.17, when the computed jump became almost stationary in a 
frame of reference moving to the right with velocity C. The velocity plot shows an extensive shear 
layer originated by the folding of the free surface, starting at the toe of the jump and ending at a 
distance of (aproximately) 4h, downstream. Within this shear layer there was a primary 
recirculation region on which the turbulence intensity was maximum. Two secondary recircu- 
lation zones with non-negligible vertical velocity were found at 2h,  and 4h, downstream of the 
jump’s front. The occurrence of these ‘roll vortices’ is well documented in the literature of surf 
zone Several small void regions were observed inside the body of the jump, 
caused by the violence of the initial breaking. In nature, significant air concentrations would be 
found instead. The inadequacy of the present model to represent air-water mixing (which 
introduces physical effects that violate the incompressibility hypothesis) has to be regarded as a 
significant limitation which has to be overcome in the future. The relevant turbulence dynamics 
was confined to the surface shear layer, the bottom-generated turbulence being irrelevant 
(as expected). In this surface layer, values of the eddy viscosity ranging from 1.5 x to 

Moving turbulent hydraulic jump hl/hP = 2.17 
Velocity field and free surface configuration 
Time: 35 seconds 

1 0.375 - 0.750 * 1.500 - 
Figure 6 .  Computed velocity field and free surface configuration for a moving jump with h,/h,=2.17 

Moving turbulent hydraulic jump h /h2 = 2.17 
Turbulent Kinetic energy contours 
Time: 35 seconds 

1) 0.0075 2) 0.0150 3) 0.0225 4) 0.0300 5) 0.375 
6) 0.0450 

Figure 7. Computed turbulent kinetic energy for a moving jump with h,/h,=2.17 
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3.0 x m2 s- were found and the turbulence Reynolds number showed strong gradients. The 
maximum of eddy viscosity was found downstream of the main production region, showing that E 

decays faster than k. There was strong production at the toe of the front, where k reached an 
absolute maximum of about 10% of the kinetic energy of the incident stream. Downstream of the 
primary production region other local maxima were found, possibly as a result of production 
originated by the large-scale roll vortices. The turbulence generated close to the jump front spread 
downwards and downstream, justifying the qualitative model of Madsen and Svendsen.20*21 
Most of the turbulence is dissipated above the height of the incident stream, i.e. at the same level 
where it is generated.22 The computed h ,  at the wall was 2.20m, with an error of 1.4% with 
respect to the theoretical value of 2.17. This provided an important check on momentum 
conservation in the present model. 

Figure 8 shows a comparison between computed and experimental distributions of the 
dimensionless turbulent velocity fluctuations and shear stress at a distance 2.0 h ,  downstream of 
the front of a jump with IF =2.83 ( h , / h ,  = 3.52). This Froude number was obtained using an input 
stream velocity u2 = - 2.0 m s-  with g = 9.81 m s - ~  downwards. The computational domain was 
chosen 2.5 m long and 0 5  m high and was discretized using a regular mesh of 200 x 40 cells. The 
turbulent velocity fluctuations were obtained from the turbulent kinetic energy by assuming the 
relative strengths for a turbulent wake.22 In general there was fair agreement except near the 
bottom, but some differences between the experimental and computational results should be 
noted. Firstly, near the bottom the computed turbulence intensity was smaller than the experi- 
mental values because bottom-generated turbulence is stronger in steady jumps than in moving 
jumps. Secondly, the experiments show that the relative strength of the turbulent velocity 
fluctuations is not constant inside the jump. This aspect of the turbulence dynamics can only be 
described in a numerical calculation using a more refined turbulence model. Finally, the 
computed downstream decay of the turbulence variables, especially of the shear stress, was 

DISTANCE DOWNSTREAM OF THE JUMP FRONT: 2.0 hi 

-computed -A Experimental (after Resh & Leutheusser'8) 

! 

0 10 20 30 0.00 0.01 0.02 
0.00 - 

0 10 20 
\/lU12/lup-CI (010) \/lvlz /I Uz-c I(O/O) ut ( au/a yy(u,-C)Z 

Figure 8. Computed versus experimental distributions of the dimensionless turbulent velocity fluctuations and shear 
stress for a hydraulic jump with lF=243 
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smaller than in the experiments. The computed depth ratio for this jump was within 1% of the 
theoretical value, again showing good overall momentum conservation. The study of the 
turbulent jumps provided a good verification and assessment of the predictive capabilities of the 
present model for strongly turbulent free surface flows. 

The second numerical simulation reported here is the breaking of a solitary wave over a slope. 
The physical domain was chosen 12 m long and 0 5  m high and consisted of three sections (see 
Figure 9). The first section, from x = 0 to 4 m, had a horizontal bottom and a still water depth of 
35.5 cm. The second section, from x = 4  to 8.3 m, had an average bottom slope of 1/20 which was 
defined by blocking out mesh cells. The third section, from x=8.3 to 12 m, had a horizontal 
bottom and a still water depth of 14 cm. This set-up reproduced approximately the physical 
conditions of one of Nadaoka’s experiments.’ The initial and boundary conditions were as 
follows. A solitary wave with dimensionless height 0.25 and a crest at x = 2 m was generated by 
specifying u, u, 4 and F according to third-order solitary wave t h e ~ r y . ’ ~  The initial conditions for 
k and E were &=2.62 x r n ’ ~ - ~  (v,/v-45). On the bottom, wall 
boundary conditions were imposed. The remaining boundaries were treated as open. The fluid 
molecular viscosity was v =  1.3 x lop6 m’ s - ’  and the acceleration due to gravity was 9.81 m s-’ 
downwards. The domain was discretized using a regular mesh of 500 x 50 cells. The time step was 

After 1 s of propagation the wave reached the slope. The wave profile was nearly symmetrical 
and the velocity (relative to the wave crest) was almost identical to the initial condition. The 
turbulent kinetic energy and the eddy viscosity were concentrated in two thin regions, one near 
the bottom and the other near the wave crest. In these two boundary layers k was about 1 Yu of the 
kinetic energy of the mean flow and vJv2.50. These values were not very different from the 
respective initial conditions. Vorticity was concentrated in the two boundary layers, as expected. 
In the interior of the fluid, only residual levels were found. The turbulent shear stress was residual 
and spatially uncorrelated, except in the two boundary layers, where vt(&/dy)/u’ -.2 x 
After 3 s of propagation the wave reached the last section of the domain and was at the onset of 
breaking. Its profile was then highly deformed, with a steep front face. The formation of a 
plunging jet with fluid velocities higher than the wave celerity was observed. The turbulent kinetic 
energy and the eddy viscosity were still concentrated in the two boundary layers. The value of k 
increased by 150% with respect to the pre-breaking stage but remained about 0.6% of the kinetic 
energy of the mean flow under the wave crest (where the plunging jet was forming). The 

m2s-’ and E =  1 . 0 7 ~  

A ~ = M  x 10-4 s. 

Physical parameters Geometrical parameters Discretization parameters 
g = 981 lenglh of domain 12m I = 500 cells 
u = 1 3 ~ 1 0 ~  Height of domain 0 5m J = 50 cells 
K, = 2 6 2 x 1 0 ’  Dimensionless Ay = 1 0 Cm 
t ,  = 1 07x1O3 Wave height 0 25 Ax = 2 4  cm 
[u,/u = 451 A1 = 2 5 x  10‘s 

Figure 9. Set-up for the solitary wave problem 
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Broken solitary wave Time: 4.5s 

Velocity field 

I 

0.250 - 0500 - loo0 - 

Turbulent kinetic enerav contours 

Figure 10. Velocity field (top) and turbulent kinetic energy (bottom) for the broken solitary wave after 4.5 s of 
propagation 

turbulence Reynolds number in these boundary layers was then v,/v N 125 and remained close to 
its initial condition in the bulk of the fluid. 

Figure 10 shows the mean velocity and the turbulent kinetic energy for the broken wave at 
t = 4.5 s. A strong shear layer was formed near the surface as a consequence of the collapse of the 
plungingjet. The turbulence intensity in this shear layer was high ( k / ( u 2  + u 2 ) =  lo%, one order of 
magnitude larger than before breaking). The turbulence generated in the bottom boundary layer 
was irrelevant in this stage. It is observed that the downward spread of turbulence was small. 
Figure 11 shows the distributions of the turbulence Reynolds number v Jv and the turbulent shear 
stress for the broken wave at the same instant. The spatial distribution of these variables was 
similar to that of the turbulent kinetic energy, their maxima being two orders of magnitude larger 
than before breaking. 

The model represented the essential features of the transition from pre-breaking to broken 
wave motion. However, the transition was less abrupt than might be expected. The decay of the 
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Brdten solitary wave 

Turbulence Reynolds number (V,/V 1 contours 

Time: 1 . 5 s  

1) 250 21500 31750 4 ) l O O O  5)1250 

Turbulent shear stress contours I 

~0.000 2)O.OlO 3)0.020 LJ0.030 5)0.010 

Figure 1 1 .  Turbulence Reynolds number VJY (top) and turbulent shear stress (bottom) distributions for the broken 
solitary wave after 4.5 s of propagation 

dissipation rate E produced too high values of the eddy viscosity before breaking started. Also, the 
distributions of the turbulence variables in the fully developed turbulent stage were more 
concentrated and had higher maxima than those found by Nadaoka’ in experiments with 
periodic waves under similar physical conditions. 

The last calculation reported here is the breaking of a train of periodic waves over a slope. The 
main purpose of this numerical experiment was to compare the dynamics of breaking periodic 
waves with that of the solitary waves. The physical conditions were specified as follows. The 
computational domain was chosen 9 m long and 040 m high, with a still water level of 030 m. 
Periodic waves were generated at the left boundary by means of special boundary conditions for 
u, v and F using second-order Stokes theory. This wave train had a height H = 6 cm and a period 
T =  1.22 s. Starting at x = 2  m from the left boundary, a slope of 1/20 was defined approximately 
by blocking out mesh cells. The waves broke over this slope as a consequence of non-linear 
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steepening. The acceleration due to gravity was g =941 m sK2 downwards and the molecular 
viscosity was chosen as v =  1.3 x m2 s - * .  This set-up is similar to that of Mizuguchi’s 
 experiment^.'^ The initial conditions for the turbulence variables were k=2.253 x lo-’ m2 s - ~  
and E =  8.574 x m2 s - ~  everywhere, corresponding to very low initial turbulence intensity. 
The computational domain was discretized using a regular mesh of 300 x 40 cells with Ax = 3 cm 
and Ay= 1 cm. 

Figure 12 shows the mean velocity field and free surface configuration after several waves have 
been introduced in the computational domain. This figure also illustrates the typical sequence of 
transformations suffered by wind waves across a surf zone. In the initial stages of shoaling, the 
waves remain nearly symmetrical (waves 1 and 2). Because of non-linear steepening, the front face 
of the waves becomes steep; a plunging jet where the particle velocity exceeds , / (gh) is formed 
near the wave crest (wave 3). After breaking, the waves propagate much like moving hydraulic 
jumps (wave 4). Finally, a ‘run-up’ region is observed near the shoreline, where the mean water 
level is slightly higher than offshore to equilibrate the loss of wave momentum flux (or radiation 
stress) across the surf zone (wave 5). Figure 13 shows very clearly the fundamental difference 
between the velocity field of pre-breaking and broken waves. Before breaking, the velocity field 
remains nearly irrotational and symmetrical about the wave crest. After breaking, there is a 

Periodic waves breaking over a slope 
2nd order Stokes theory; T=l.22 seconds; Hlnc,dent=6 cm 
Time: 8 seconds 

L 0.10 0.20 - 0.40 - 
~- 

Figure 12. Mean velocity and surface configuration for a train of periodic waves at r = 8  s 

a slope (detail) 
2nd order Stokes theory; T=1.22 seconds, Hlnc,dent=6 cm 
Time: 8 seconds 

.............. ....... +/ , . _ _ _ _ _ I , .  ................. . . . . . . . . .  . . . . . . .  

................. 
. - -__ 

0.80 - 1 ’ 0.20 0.40 - 

Figure 13. Detail of the velocity field in the surf zone between x =4.5 and 9.0 m at t = 8  s 



142 C. M. LEMOS 

strong shear layer above the trough level and vorticity is high. The rotational component of the 
flow is clearly responsible for most of the mass flux associated with broken waves (see also 
Reference 2). 

Figures 14 and 15 show the contours of turbulent kinetic energy and turbulence Reynolds 
number v,/v in the surf zone. As expected, turbulence was much more intense after breaking. The 
regions with high turbulence intensity were confined to the region above the trough level. As in 
the previous simulation, the computed distributions of the turbulence variables were more 
concentrated and had higher maxima than were found in  experiment^.'^ The computed results 
suggest that surf zone waves behave somewhat like a train of independent solitary waves, with a 
small return flow under their troughs. Most of the turbulence is dissipated where it is created. The 
downward spread of turbulence intensity by advective and diffusive transport is relatively slow. 

Figure 16, after Miz~guchi , '~  shows experimental measurements of the velocity field (cm s - l )  
and turbulent kinetic energy (cm2 s - ~ ) .  The inclination of the small segments in the turbulent 
kinetic energy plot indicates the relative intensity of the velocity fluctuations. It is seen that the 
turbulence is nearly isotropic (approximately 45" inclination) almost everywhere. 

The structure of the experimentally observed phase-averaged velocity field is very similar to 
that of the computed waves at approximately the same depth (wave 3). This is particularly 
noteworthy underneath the breaking wave crest, where remnants of the structure of the velocity 

~ 

Periodic waves breaking over a slope 
Contour lines of turbulent kinetic energy (detail) 
Time 8 seconds 

1) 010 2)020 3) 0.30 4 ) 0 4 0  5) 0.50 
6 )060  7)O 70 8) 080 - ______~ __ __ 

Figure 14. Contour lines of the turbulent kinetic energy in the surf zone between x=4.5 and 9.0m at t = 8  s 

~- 

Periodic waves breaking over a slope 
Turbulence Reynolds number (u,/u) (detail) r Time 8 seconds 

1) 25.0 2) 50 0 3) 750 4) 100.0 5) 1250 
6) 1500 7) 175.0 ___________-_ 

Figure 15. Contour lines of the turbulence Reynolds number vJv in the surf zone between x=4.5 and 9.0m at t = 8  s. 
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Figure 16. Experimental results of mean velocity field (top) and turbulent kinetic energy (bottom) (adapted from 
MizuguchiZ4) 

field of the nearly irrotational overturning wave just before breaking were observed in both 
experimental and numerical results. Also, the magnitude of the computed velocity in the plunging 
jet was in fair agreement with the experimentally observed value. 

The computed distribution of turbulent kinetic energy was more concentrated than the 
experimentally observed distribution. The regions where the computed turbulent kinetic energy 
was high were located above the wave trough level, whereas the experiments show significant 
downward spread of turbulence intensity and residual turbulence levels left by previous waves. 
Also, the computed maximum of turbulence was about 200% higher than the corresponding 
value found by Mizuguchi. 

These discrepancies do not necessarily imply, however, that the k--E model performed poorly in 
this test case, because the experimental investigations also have important limitations. First, in 
the regions where the turbulence is most intense, accurate measurements are not yet available 
(because of aeration). Secondly, the measurement of the Reynolds stresses in wave-breaking 
experiments is very sensitive to the method used for defining averages’ and to wave-wave 
interaction. 

Further investigation is required to fully evaluate the quality of the present model for 
computing turbulence properties in breaking waves, and there is much room for improvement. 

7. CONCLUSIONS AND FUTURE DEVELOPMENTS 

A simple, yet powerful numerical technique for transient turbulent flows involving multiple free 
boundaries has been presented. This technique is an extension of the SOLA-VOF algorithm6 in 
which the dynamics of the turbulence is treated by introducing a especially developed k--E model. 
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The present technique is capable of describing wave transformation phenomena before and 
after breaking and many other flow problems of practical interest. This ability was proven in 
several computational examples, in which the relevant properties of difficult turbulent free surface 
flows were predicted accurately. Thus a possible future application of the model described herein 
is to serve as a complement to experimental studies as a ‘numerical laboratory’. 

Some future developments of the model are being considered at the time of writing. A brief 
description of these improvements will now be outlined. 

An important physical phenomenon in turbulent free surface flows is air-water mixing, which 
introduces non-negligible density variations and limited compressibility. Inclusion of these two 
effects in the present model would require an additional transport equation for the air concentra- 
tion and a partial restructuring of the algorithm. Work is presently under way to incorporate 
these refinements. 

The results reported herein indicate that the k--E model has important limitations for represent- 
ing low-intensity and non-isotropic turbulent diffusion. These limitations can be partially 
overcome by replacing the k--E model by an algebraic stress or full Reynolds stress modeL3 

From the numerical viewpoint the most important spurious effect found so far is artificial 
roughness, which disrupts the structure of the flow near obstacles that are not aligned with the 
mesh. This will be eliminated in the near future by using a refinement of the pressure-velocity 
iteration technique which allows arbitrary cell boundaries while maintaining the same type of 
finite difference mesh.’ Also, the use of more efficient discretizations for the transport equations is 
being considered at the time of writing. 
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APPENDIX: NOMENCLATURE 

dimensionless parameter, ln(Eu, y/v) 
celerity of a moving hydraulic jump 
constants of k--E turbulence model 
constant in logarithmic law-of-the-wall 
volume-of-fluid function 
Froude number 
components of body force vector in co-ordinate directions x and y respectively 
water levels on either side of a hydraulic jump 
wave height 
turbulent kinetic energy per unit mass 
time 
wave period 
velocity component in x-direction 
uniform velocity in grid turbulence problem 
velocities on either side of a moving hydraulic jump 
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us 
U W  

u* 
v 
X 

X 
Y 
Yw 

Y +  

Greek letters 

a 

B 
Y 

velocity in co-ordinate system with x-axis oriented in direction of local streamline 
mean velocity at yw 
friction velocity in a constant stress boundary layer 
velocity component in y-direction 
horizontal co-ordinate 
dimensionless parameter, u*/uw 
vertical co-ordinate 
distance from a wall 
dimensionless distance, u., y/v 

parameter controlling amount of upstream differencing in approximations for 
advective fluxes in turbulence equations 
constant in +damping function 
parameter controlling amount of upstream differencing in approximations for 
advective fluxes in turbulence equations 
space or time increment 
rate of dissipation 
von Karman constant 
kinematic molecular viscosity 
turbulent (eddy) viscosity 
fluid density 
constants of k--E model 
shear stress at a wall in a constant stress boundary layer 
pressure divided by (constant) density 

REFERENCES 

1. C. C. Mei, The Applied Dynamics ofOcean Surface Waues, Wiley-Interscience, New York, 1983. 
2. K. Nadaoka, ‘A fundamental study on shoaling and velocity field structure of water waves in the nearshore zone’, 

Tech. Rep. 36, Deparment of Civil Engineering, Tokyo Institute of Technology, 1986. 
3. W. Rodi, Turbulence Models and Their Application in Hydraulics, IAHR, Delft, 1980. 
4. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic, London, 1972. 
5. B. D. Nichols and C. W. Hirt, ‘Methods for calculating multi-dimensional, transient free-surface flows past bodies’, 

Proc. lsr Inl. Conf. on Numerical Ship Hvdrodynamics, Gaithersburg, MD, October 1975. 
6. B. D. Nichols, C. W. Hirt and R. S. Hotchkiss, ‘SOLA-VOF: a solution algorithm for transient fluid flow with multiple 

free-boundaries’, Los Alamos Scientific Laboratory Rep. LA-8355, 1980. 
7. A. C. Hindmarsh, P. M. Gresho and D. F. Griffiths, ‘The stability of explicit Euler time-integration for certain finite- 

difference approximations of the multi-dimensional advection4iffusion equation’, I n t .  j .  numer. methods Juids, 4, 

8. C. W. Hirt, B. D. Nichols and N. C. Romero, ‘SOLA: a solution algorithm for transient fluid flows’, Los Alamos 

9. W. P. Jones and B. E. Launder, ‘The prediction of larninarization with a 2-equation model of turbulence’, In t .  J. Heat 

853-897 (1984). 

Scientific Laboratory Rep. LA-5852, 1975. 

Mass Transfer, 15, 301-314 (1972). 
10. F. H. Harlow and P. I. Nakayama, ‘Turbulence transport equations’, Phys. Fluids, 11, 2323-2332 (1967). 
11. F. H. Harlow and P. I. Nakayama, ‘Transport of turbulence energy decay rate’, Los Alamos Scientific Laboratory Rep. 

12. J. 0. Hinze, Turbulence, 2nd edn, McGraw-Hill Classic Textbook Reissue Series, New York, 1975. 
LA-3854, 1968. 

13. J. K. Dukowicz and J. D. Ramshaw, ‘Tensor viscosity method for convection in numerical fluid dynamics’, J .  Comput. 
Phys., 32, 71-79 (1979). 

14. A. A. Amsden and F. H. Harlow, ‘The SMAC method: a numerical technique for calculating incompressible fluid 

15. P. M. Gresho and R. L. Sani, ‘On pressure boundary conditions for the incompressible Navier-Stokes equations’, In t .  
flows’, Los Alamos Scientific Laboratory Rep. LA-4370, 1970. 

j .  numer. methodsjuids, 7 ,  1111-1145 (1987). 



146 C. M. LEMOS 

16. H. H. Fernholz, ‘External flows’, in P. Bradshaw (ed.), Turbulence, Springer, Heidelberg, 1978. 
17. B. E. Launder, ‘Second-moment closure and its use in modelling turbulent industrial flows’, Int. j .  numer methods 

18. F. J. Resh and H. J. Leutheusser, ‘Reynolds stress measurements in hydraulic jumps’, J. Hydraul. Res., 10, 40-430 

19. J. A. Battjes, ‘Surf-zone dynamics’, Ann. Reo. Fluid Mech., 20, 257-293 (1988). 
20. P. A. Madsen and 1. A. Svendsen, ‘Turbulent bores and hydraulic jumps’, J .  Fluid Mech., 129, 1-25 (1983). 
21. I. A. Svendsen and P. A. Madsen, ‘A turbulent bore on a beach’, J .  Fluid Mech., 148, 73-96 (1984). 
22. I. A. Svendsen, ‘Analysis of surf-zone turbulence’, J .  Geophys. Res., 92, 51 15-5124 (1987). 
23. J. D. Fenton, ‘A ninth order solution for the solitary wave’, J .  Fluid Mech., 53, 257-271 (1972). 
24. M. Mizuguchi, ‘Experimental study on kinematics and dynamics of wave breaking’, Proc. Int.  Con/: nn Coastal 

Juids, 9, 963-985 (1989). 

( 1  972). 

Engineering, A X E ,  New York, 1986, pp. 589-603. 


